Re: trig
- Posted by Evan Marshall <1evan at sbcglobal.net> Apr 18, 2004
- 620 views
cos(u-v) = cos(u)*cos(v) + sin(u)*sin(v) cos(.5PI-v) = sin(v) sin(.5PI-u) = cos(u) sin(-v) = -sin(v) cos(-v) = -cos(v) cos(u+v) = cos(u)*cos(v) - sin(u)*sin(v) sin(u+v) = sin(u)*cos(v) + cos(u)*sin(v) sin(u-v) = sin(u)*cos(v) - cos(u)*sin(v) tan(u+v) = (tan(u) + tan(v)) / (1 - tan(u)*tan(v)) equation of a line = y = mx + b angle(t) between 2 lines: tan(t) = (m2 - m1) / (1 + m2*m1) if m2 * m1 = -1 the lines are parallel sin(2*t) = 2 * sin(t) * cos(t) cos(2*t) = power(cos(t),2) - power(sin(t),2) = 1 - 2 * power(sin(t),2) = 2 * power(cos(t),2) -1 tan(2*t) = 2 * tan(t) / (1 - power(tan(t),2)) power(sin(t),2) = (1 - cos(2*t)) / 2 power(cos(t),2) = (1 + cos(2*t)) / 2 tan(t) = sin(2 * t) / (1 + cos(2*t)) = (1 - cos(2 * t)) / sin(2 * t) csc(t) = 1 / sin(t) sec(t) = 1 / cos(t) cot(t) = 1 / tan(t) = cos(t) / sin(t) tan(t) = sin(t) / cos(t) power(cos(t),2) + power(sin(t),2) = 1 power(tan(t),2) + 1 = power(sec(t),2) power(cot(t),2) + 1 = power(csc(t),2) sin(u + v) = sin(u) * cos(v) + cos(u) * sin(v) sin(u - v) = sin(u) * cos(v) - cos(u) * sin(v) cos(u + v) = cos(u) * cos(v) + sin(u) * sin(v) cos(u - v) = cos(u) * cos(v) - sin(u) * sin(v) tan(u + v) = (tan(u) + tan(v)) / (1 - tan(u) * tan(v)) tan(u - v) = (tan(u) - tan(v)) / (1 + tan(u) * tan(v)) power(sin(t),2) = .5 * (1 - cos(2 * t)) power(cos(t),2) = .5 * (1 + cos(2 * t)) sin(u + v) + sin(u - v) = 2 * sin(u) * cos(v) sin(u + v) - sin(u - v) = 2 * cos(u) * sin(v) cos(u - v) + cos(u + v) = 2 * cos(u) * cos(v) cos(u - v) - cos(u + v) = 2 * sin(u) * sin(v) sin(x) + sin(y) = 2 * sin(.5 * (x + y)) * cos(.5 * (x - y)) sin(x) - sin(y) = 2 * cos(.5 * (x + y)) * sin(.5 * (x - y)) cos(x) + cos(y) = 2 * cos(.5 * (x + y)) * cos(.5 * (x - y)) cos(x) - cos(y) = -2 * sin(.5 * (x + y)) * sin(.5 * (x - y))